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Conventional Shale Gas Processing Begins With Cryo. Separation
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CompressionCryogenic
Distillation
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Cryogenic Separation Recovers Ethylene 
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Typically, Methane and H2 Are Burned In the Cracking Reactor
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Unreacted Ethane and C3+ Can Be Recycled Back to Reactor 
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Agrawal R., Li, Y.  US Patent 11,339,104 B2. 
Agrawal, R. and Oladipupo, P. US Patent 11,267,768 B2.

Chen, Z., Li, Y., Oladipupo, W. P., Gil, E. A. R., Sawyer, G., & Agrawal, R. Cell Reports Physical Science, (2021) 
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Methane Dilution Dramatically Simplifies the Process
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Chen, Z., Li, Y., Oladipupo, W. P., Gil, E. A. R., Sawyer, G., & Agrawal, R. Cell Reports Physical Science, (2021) 

Quenching by Expansion Generates Power & Reduces H2O Consumption
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Agrawal, R. and Rodriguez, E. (2022). Turboquenching, U.S. Provisional Patent Application No. 63/347,759.
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Power From Turbo-Quenching Can Be Used for Compression
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A Single Shaft Drive Simplifies the Process
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Turboquenching & Compression Are Combined Into a Single Process
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Electric Cracking Eliminates CO2 
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Electric Cracking Towers Enhance Cracking Process
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Heat Integration Reduces External Heating Demand
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Energy Storage Enables Around-the-clock Operation With 
Variable  Renewable Electricity
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Membrane Separation Recovers Coproduced H2
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H2 Can Be Stored As Energy Reserve
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Electrolyzer Can Generate Additional H2 During Strategic Hours
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If Liquid Hydrocarbons Are Desired, An Oligomerization Unit is Used
Turboquenching &

Compression
Oligomerization

Power Storage & Electrolyzer H2 Fuel Cell H2 Storage H2 Membrane 
Separation

Sweet & Dry
Shale Gas

Electric 
Power

H2
CH4
C2H6
C2H4
C3+

H2
CH4
C2H6
C2H4
C3+

H2
CH4
C2H6
C2H4
C5+

H2
CH4

CH4

O2

H2O

H2H2H2

H2O

Air

Electric Cracking Tower
+ Methane Dilution

An Absorption-Flash System Recovers Liquid Hydrocarbons
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Heat Integration Reduces Demand for External Utilities
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Unreacted Molecules Are Recycled to the Electric Cracking Tower
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A Portion of the Product Can Be Used As Absorption Agent
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In Summary
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Both Ethylene and Liquid Hydrocarbons Productions Are Decarbonized

CISTAR 2023 Process for Modular and 
Decarbonized Liquid Hydrocarbon Production

CISTAR 2023 Process for Modular and 
Decarbonized Ethylene Production

● Agrawal, Li, US Patent 11,339,104 B2;  ●Agrawal, Oladipupo, US Patent 11,267,768 B2.
● Agrawal, Chen, US11402153B2; ● Agrawal, Chen, US11434184B2.

● Agrawal, Chen, Oladipupo, US11578019B2; ● Agrawal, Rodriguez, U.S. Provisional Patent Application No. 63/347,759.
 

Part 2
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https://cistar.us/

• Study of Variable Renewable power Storage

• Study of Electrically Driven Energy Intensive Separation Processes 

We Are Moving Towards Decarbonization of Shale Gas Processes

https://cistar.us/

At Bakken Field, 10 MMSCFD Plant Electricity Requirement: 11.6 MW 
Byproduct H2 can provide 3.33 MW of power

Battery Storage Based on Average Availability: 158.8 MWh
CH4 C2H6 C3H8 C4H10 C5H12 CO2 N2

Bakken shale gas basin 
composition (mol%)

57.82 19.98 11.35 3.79 1.26 0.57 5.23

Bakken Field: Energy Storage for Variable PV Power 
                   the Average Sunlight Scenario
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Data Shown is for a Typical Meteorological Year

However, Sunlight and Wind Show Diurnal and Seasonal 
Variability

https://cistar.us/

Energy Balance Equations are written and storage minimized over the entire  year. 

Calculating Storage While Accounting for Variability
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https://cistar.us/

Battery Storage

● Annual average wind power = 9.1 MW● Annual average solar power = 9.5 MW
Solar Power Only @ Bakken Field Wind Power Only @ Bakken Field
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● Annual average solar power = 9.5 MW
Solar Power Only @ Bakken Field Wind Power Only @ Bakken Field
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Actual Battery Storage Is 40 to 90 Times the Average Day Based Battery Storage of 159 MWh 
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https://cistar.us/

● At Optimum: Annual average solar power = 2.2 MW; Annual average wind power = 6.8 MW
Hybrid Power Combining Solar and Wind Power @ Bakken Field

Battery Storage as Proportion of Solar
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https://cistar.us/

● At Optimum: Annual average solar power = 2.2 MW; Annual average wind power = 6.8 MW
Hybrid Of Solar and Wind Power @ Bakken Field

Battery Storage as Proportion of Solar
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https://cistar.us/

● Annual average solar power = 9.6 MW

H2 Storage Battery Storage

Solar Power @ Bakken Field
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Hydrogen Storage Greatly Reduces Battery Storage

Storage of Co-Product Hydrogen Greatly Reduces Battery Storage

https://cistar.us/

• Study of Variable Renewable power Storage

• Study of Electrically Driven Energy Intensive Separation Processes 

We Are Moving Towards Decarbonization of Shale Gas Processes
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Study of Electrically Driven Energy Intensive Separation Processes 

Separation Processes Are Energy Intensive

We are considering electrically driven separation processes 

• Distillations

• Membranes

https://cistar.us/
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A Propylene-Propane Separation Case Study

Feed α (Rel. Vol) 𝐓𝐫𝐞𝐛 (C) 𝐓𝐜𝐨𝐧𝐝 (C) �̇�𝐫𝐞𝐛 (kW) �̇�𝐜𝐨𝐦𝐩 (kW)

0.7 1.16 22.9 15 27,300 1,225

Steam Driven

Comp 𝒛𝑭
Propylene 0.7

Propane 0.3

Propylene
Purity 99.6%

Recovery 98%

�̇�𝐫𝐞𝐛 = 27.3 MW

Electric Supply
�̇�𝐜𝐨𝐦𝐩 = 1.2 MW

9 
bar

Heat Pumped

9 
bar

Steam Driven vs Heat Pumped Distillation
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Case Study - Aromatic Separation
Benzene (A) Toluene (B) P-Xylene (C) O-Xylene (D)

55% 15% 15% 15%

149 MJ/kmol 117 MJ/kmol 42.8 MJ/kmol 

Heat Integration Heat Pump

Heat Pumps in Multicomponent Systems

https://cistar.us/
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Case Study - Aromatic Separation
Benzene (A) Toluene (B) P-Xylene (C) O-Xylene (D)

55% 15% 15% 15%

149 MJ/kmol 117 MJ/kmol 42.8 MJ/kmol 

Heat Integration Heat Pump
Leveraging superstructure optimization, our algorithm achieves global optimal 

configuration for multi-component Distillations by integrating Heat Pumps.

Heat Pumps in Multicomponent Systems
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Feed
Retentate 
Product

Permeate
Product

Global Optimization Of Multicomponent Membrane Cascade 
Power and The Overall Cost

https://cistar.us/
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Feed
Retentate 
Product

Permeate
Product

The algorithm demonstrates significant success in achieving global 
minimum power consumption for feeds containing up to 6 components and 

up to 5 membrane stages within a Cascade .

Global Optimization Of Multicomponent Membrane Cascade 
Power and The Overall Cost
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Membrane Cascade

Electric Supply
�̇�𝐜𝐨𝐦𝐩 = 2.4 MW

Permselectivity = 250

A Propylene-Propane Separation Case Study

Heat Pumped Distillation

Electric Supply
�̇�𝐜𝐨𝐦𝐩 = 1.2 MW

9 
barComp 𝒛𝑭

Propylene 0.7

Propane 0.3

Propylene
Purity 99.6%

Recovery 98%

Heat Pumped Distillations Can Be Compared To Membrane separations

https://cistar.us/
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• Created simplified plant flowsheets to produce alkenes and 
liquid products from shale gas.

In Summary
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• Developed global optimization tools for renewable electricity-driven shale 
gas processing plants for decarbonization.

In Summary

Solar Power Only @ Bakken Field

Battery Storage

Hours
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https://cistar.us/
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• Developed global optimization algorithm for binary and multicomponent 
membrane cascade power  and the overall cost

In Summary

The Superstructure for the Membrane Cascade
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• Developing heat pumped distillation optimization methods for both binary 
and multicomponent distillations.

In Summary

Heat Pumped

THANK YOU
QUESTIONS?
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